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Abstract. We study some new universal aspects of diffusion in chaotic systems, especially
those having very large Lyapunov coefficients on the chaotic (indecomposable, topologically
transitive) component. We do this by discretizing the chaotic component on the surface-of-
section (SOS) in a (large) numberN of simplectically equally big cells (in the sense of equal
relative invariant ergodic measure, normalized so that the total measure of the chaotic component
is unity). By iterating the transition of the chaotic orbit through the SOS, wherej counts the
number of iterations (discrete time) and assuming complete lack of correlation, even between
consecutive crossings (which can be justified due to the very large Lyapunov exponents) we
show the universal approach of the relative measure of the occupied cells, denoted byρ(j),
to the asymptotic value of unity, in the following way:ρ(j) = 1− (1− 1

N
)j , so that in the

limit of big N , N →∞, we have, forj/N fixed, the exponential lawρ(j) ≈ 1− exp(−j/N).
This analytic result is verified numerically in a variety of specific systems: for a plane billiard
(Robnik 1983,λ = 0.375), for a 3D billiard (Prosen 1997a = − 1

5 , b = − 12
5 ), for an ergodic

logistic map (tent map), for a standard map (k = 400) and for the hydrogen atom in a strong
magnetic field (ε = −0.05) the agreement is almost perfect (except, in the latter two systems, for
some long-time deviations on very small scales). However, for Hénon–Heiles system (E = 1

6)
and for the standard map (k = 3) the deviations are noticeable though not very big (only about
1%). We have tested the random number generators (Presset al 1986), and confirmed that some
are almost perfect (ran0 and ran3), whilst two of them (ran1 and ran2) exhibit big deviations.

One of the major open problems in the mathematics of nonlinear Hamiltonian (conservative)
chaotic systems of the KAM type is the proof of the so-called coexistence problem (Strelcyn
1991), i.e. the proof that the chaotic components have positive measure. (The KAM Theorem
guarantees that the set of invariant tori has positive measure, whose complement is small
with the perturbation parameter (Kolmogoroff 1954, Arnold 1963, Moser 1962, Benettin

¶ E-mail address: robnik@uni-mb.si
+ E-mail address: jure.dobnikar@uni-mb.si
∗ E-mail address: andrea.rapisarda@ct.infn.it
] E-mail address: prosen@fiz.uni-lj.si
††E-mail address: marko.petkovsek@fmf.uni-lj.si

0305-4470/97/230803+11$19.50c© 1997 IOP Publishing Ltd L803



L804 Letter to the Editor

et al 1984, Gutzwiller 1990).) The chaotic component could be defined e.g. by the positivity
of the (largest) Lyapunov exponent, which is a sufficient but not necessary criterion†.
We shall define a chaotic component as the closure of a dense chaotic orbit, which is
thus assumed to be an indecomposable invariant component (topologically transitive, i.e.
containing a chaotic dense orbit).

There are really no serious doubts about the positivity of the measure of the chaotic
components, and so in physics we rely on heuristic arguments to actually assume positivity.
Then the question is how to calculate the symplectic (invariant and ergodic) measure of the
chaotic component.

We have approached this problem in a recent extensive work (Dobnikar 1996, Robnik
and Dobnikar 1997) on the dynamics in a plane-billiard system, defined as the quadratic
conformal map of the unit disk (in the complexz-plane) onto the physical (complex)w-
plane,w(z) = z + λz2. This system has been introduced by Robnik (1983) and recently
extensively studied for many different values ofλ by many authors, in a variety of contexts
and even in experimental set-ups such as quantum dots (Bruus and Stone 1994, Stone and
Bruus 1993a, b), optical models (Nöckel and Stone 1997, N̈ockelet al 1996) and microwave
cavities (Rehfeldet al 1997, Richter 1996, Stöckmannet al 1997). Further dynamical details
were corrected in Hayliet al (1987).

At λ = 0 we have the integrable case of the circle billiard, for 0< λ < 1
4 the

billiard is convex, and since the boundary is analytic, the KAM theory applies (Lazutkin
1981, 1991), atλ = 1

4 we get the first point of zero curvature at the boundary point
w = w(z = −1) = − 3

4, allowing for the breaking of Lazutkin caustics (invariant tori
associated with the boundary glancing orbits), and for1

4 < λ < 1
2 the billiard is non-

convex, largely and strongly chaotic (very tiny islands of stability) probably becomes
rigorously ergodic at someλ > 0.2775 (Li and Robnik 1994) and is definitely proven to be
rigorously ergodic forλ = 1

2 (the so-called cardioid billiard, having the cusp singularity at
w = w(z = −1) = − 1

2) (Markarian 1993). The cardioid billiard has also been studied by
Bäckeret al (1995) and by B̈acker and Dullin (1997).

Our main problem was to calculate numerically, accurately and reliably, the measure
of chaotic components. Working in the KAM regime (0< λ < 1

4) we were observing the
typical KAM hierarchy of smaller and smaller islands of stability surrounded by chaotic
components, the details of which will be reported in a separate paper (Robnik and Dobnikar
1997), and are reported already in Robnik (1983).

The main objective was to calculate the fractional measure (the relative area on the
SOS, the latter being defined by the Poincaré–Birkhoff coordinates; see e.g. Berry (1983),
Robnik (1983) of the largest chaotic component at givenλ, which we traditionally denote
by ρ2.

This parameter is also important in treating the related quantum mechanical problem
(solutions of the Helmholtz equation with the Dirichlet boundary conditions on the billiard
boundary) (Berry and Robnik 1984, Prosen and Robnik 1993, 1994a, b, Li and Robnik
1995).

We have discovered, to our surprise, that this numerical calculation is extremely difficult,
and as a consequence, some of the previous results had to be revised. By dividing the
SOS into a large number of rectangular grid cells of equal relative (normalized) measure
we have calculated the relative measure of the chaotic componentρ2 by three different
methods:(M1) calculating the Lyapunov exponent for a trajectory starting in a given cell

† For example, in nonrational plane polygonal billiards all Lyapunov exponents are strictly zero (Sinai 1976) yet
they can be ergodic. Strong evidence for this has recently been published by Artusoet al (1997).
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and summing up the area of cells having the positive Lyapunov exponent;(M2) calculating
two nearby trajectories, separated by an infinitesimal distance (e.g. single precision e-8
while all calculations were in double precision e-16) and summing the cells exhibiting
macroscopic divergence in a reasonable time; and(M3) starting the chaotic trajectory and
counting (summing up) the area of the cells visited (black cells).

It turns out that the third method(M3) is the fastest and most reliable. To improve
the result one has to enlarge the number of cellsN on the chaotic component. However,
then the timej (of iterating the map on the SOS, the discrete time) has to be taken much
larger (by at least several orders of magnitude) thanN , otherwise the statistics of visiting
cells (black cells) would be insignificant. Even after calculating as many as 109 iterations,
with N = 1000–2000, the result was no better than within 1%. One reason is that the
boundary of the chaotic component turned out to have relatively large fractal dimension
around 1.56. The difficulties of estimating the asymptotic value of the relative areaρ2 of the
chaotic component led us to the careful investigation of the evolution of the relative area of
occupied (black) cellsρ2(j) as timej proceeds. We wanted to understand this theoretically,
in order to make better estimates of the limiting asymptotic valueρ2 ≡ ρ2(j = ∞). From
here onwards we shall use the notationρ(j) ≡ ρ2(j)/ρ2(j = ∞).

In general, this time evolutionρ(j) with j is quite complex and specific, nonuniversal,
depending on many features appearing in the phase space (SOS), e.g. the existence of
sticky objects like cantori can affect a temporary but quite persistent trapping of the orbit
near such an object, which is then manifested in a transient plateau of the curveρ(j),
which sometimes might be mistakenly interpreted as final and definite convergence of the
cumulative area/volumeρ2(j). However, if the system is really strongly chaotic, having a
large maximal positive Lyapunov exponent, then due to the bound motion and conservation
of the phase-space volume, we find a very strong stretching and folding in the phase space.
In such a limiting case, therefore, one small phase-space cell (SOS cell) becomes uniformly
distributed, in the coarse-grained sense, all over the allowed chaotic component. Thus,
in such extreme cases, the probability of entering a given cell belonging to the same
chaotic component in SOS is just equal to the relative measure of the cell, i.e. there are
no correlations, not even between two consecutive SOS iterations: complete randomness of
deterministic motion.

While the behaviour in such an ideal extreme case is quite obvious, it is far from obvious
that the conditions of the complete randomness are actually satisfied in specific chaotic
deterministic dynamical systems. Therefore, to make things precise we have developed the
following theoretical model.

Suppose we haveN cells, where their order and geometry of arrangement is completely
irrelevant and perhaps not even known. We are filling the cells with balls, one at the time. At
each stepj (discrete time) we have equal probability of choosing any cell, equal toa ≡ 1/N .
(Thus there are absolutely no correlations between any moves, including the consecutive
ones, and therefore e.g. the repetition of falling into a given, already filled, cell is allowed.)
We define byPj (k) the probability that at thej th stepk cells are occupied, keeping in
mind thata = 1/N is the model parameter implicit in the mathematical formulae. We shall
refer to this model asthe random model(of strongly chaotic deterministic diffusion). The
probabilities must be normalized, therefore

k=N∑
k=1

Pj (k) = 1 ∀j = 1, 2, . . . . (1)

We shall calculatePj (k), and their moments, in particular the first moment, namely the
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average (normalized) measure of the occupied cells,

ρ(j) ≡
N∑
k=1

kaPj (k) = 〈ka〉 (2)

where by〈· · ·〉 we denote the averaging operation.
Before explicitly calculatingPj (k) we observe the physically (probabilistically) quite

obvious recursion relation, namely

Pj+1(k + 1) = Pj (k + 1)
k + 1

N
+ Pj (k)

(
1− k

N

)
∀06 k 6 j (3)

where we also define the boundary conditions

Pj (0) ≡ 0 P1(1) = 1 Pj (k > j) = 0 Pj (k > N) = 0. (4)

The interpretation of equation (3) is: the probability of having(k + 1) cells occupied at
time (j + 1) is equal to the sum of the following probabilities: either at timej the (k + 1)
cells were already occupied, and we add the next ball into the black cells with probability
(k + 1)/N , or at timej only k cells are occupied (black), and we add the next ball (the
(j + 1)st one) into the empty (not-yet occupied) cells with probability(1− k/N). With the
boundary conditions (4) the recursion relation (3) solves the problem, in principle. We show
the explicit solution below, using a different approach. However, for a practical (numerical)
evaluation ofPj (k) (on the computer) it is much better to use the recursion formula (3) than
the explicit result which we shall derive below.

First note that the summation of the recursion equation (3) on each side fromk = 0 to
k = N − 1 confirms the preservation of normalization (1), for allj .

Next, we can immediately find the solution forρ(j) by the following trick: multiply
the recursion relation (3) on the left and on the right by(k + 1)/N and sum it fromk = 0
to k = N − 1. By denotingS(j) the second moment,

S(j) ≡ 〈(ak)2〉 =
k=N∑
k=1

Pj (k)(ak)
2 (5)

we obtain in a straightforward manner,

ρ(j + 1) = S(j)− (S(j)− Pj (N))+ (1− a)(ρ(j)− Pj (N))+ a(1− Pj (N)) (6)

and therefore after cancellation of theS(j) we get the simple recursion equation forρ(j),
namely

ρ(j + 1) = a + (1− a)ρ(j) (7)

with the explicit solution, which is quite easy to find,

ρ(j) = 1− (1− a)j = 1−
(

1− 1

N

)j
(8)

which in the limit of largeN , for j/N fixed, becomes a simple exponential law

ρ(j) ≈ 1− exp

(
− j
N

)
. (9)

We see that in the limit of sufficiently largeN , for j/N fixed, we have the universal scaling
of the relative measure of the chaotic regionρ, normalized to unity, such thatρ(j) → 1,
whenj →∞, as a function of the scaled discrete time, namelyj/N . We shall show below,
that this law is obeyed by a surprising variety of deterministic dynamical systems.
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Our random modelis a probabilistic (statistical) model and therefore we can calculate
all moments ofPj (k), systematically, using the same trick as above: multiply the recursion
relation (3) by(k + 1)2/N2 on both sides, sum it up fromk = 0 to k = N − 1 on both
sides, and uncover the recursion relation for the second momentS(j), namely

S(j + 1) = 1

N2
+
(

2

N
− 1

N2

)
ρ(j)+

(
1− 2

N

)
S(j) (10)

and by using the exact result forρ(j) from equation (8) we have

S(j + 1) = 2a − a(2− a)(1− a)j + (1− 2a)S(j) a ≡ 1/N. (11)

This equation can be solved either by standard techniques or by using the definition ofS(j),
equation (5), to yield the explicit result

S(j) = 1− (2− a)(1− a)j + (1− a)(1− 2a)j a ≡ 1/N (12)

so that the predicted dispersionσ 2(j) according to our model is exactly

σ 2(j) = S(j)− ρ2(j) = a(1− a)j + (1− a)(1− 2a)j − (1− a)2j a ≡ 1/N. (13)

In the asymptotic limit of a sufficiently large number of cellsN = 1/a→∞, but keeping
j/N fixed, we find the simple exponential laws:

ρ(j) ≈ 1− exp(−j/N) S(j) ≈ [1− exp(−j/N)]2 ≈ ρ2(j) (14)

and therefore

σ 2(j) ≈ N−1[exp(−j/N)− exp(−2j/N)] → 0. (15)

Now we show the explicit and exact result forPj (k), for the sake of completeness. In fact
the quantity we seek is the subject of the classical problem from combinatorial analysis,
treated e.g. in Vinogradov (1979) volume 2, p 973, Riordan (1978) p 48, table 2 and Graham
et al (1994). The question is how many possibilities are there to distributej different things
into N different cells under the condition thatN − k cells are empty (i.e. preciselyk cells
are occupied): the answer is well known, namely in the literature denoted byCNj (N − k),

CNj (N − k) =
(

N

N − k
)
k!S(j, k) = N !

(N − k)!S(j, k) (16)

whereS(j, k) are the so-called Stirling numbers of the second kind (Vinogradov 1979,
Riordan 1978, Grahamet al 1994)

S(j, k) ≡ 1

k!

k∑
i=0

(
k

i

)
ij (−1)k−i (17)

which are known to satisfy the triangular recursion relationS(j, k) = kS(j −1, k)+S(j −
1, k− 1), whereS(0, 0) = 1, S(j, 0) = 0, S(0, k) = 0 (j, k) > 0. Of course, having theN
cells andj things, as in ourrandom model, the total number of possibilities to distributej
things (balls) intoN cells is justNj , and therefore we have the final and complete explicit
solution to therandom model, namely

Pj (k) = CNj (N − k)
Nj

= N !S(j, k)
(N − k)!Nj

. (18)

Now we proceed by analysing specific dynamical systems from the point of view of the
statistical theory presented in ourrandom model, to see to what extent we find agreement
in real systems. The really big surprise is that the behaviour was found to be in excellent or
even perfect agreement with theory in a large variety of deterministic dynamical systems,
sufficiently far from a pronounced KAM regime, by which we mean either close to ergodic
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Figure 1. (a)–(c) We show the plots ofρnumerical(j)− ρtheory(j) versus the scaled discrete time
j/N . The more noisy curve is the numerical result for a chaotic orbit with a certain representative
initial condition, whilst the less noisy one is the average over 50 evenly distributed initial
conditions. We also show the±σ(j) standard deviation (pairs of smooth curves) as predicted
theoretically in equation (13), for one initial condition (outer curves) and for the average over
the 50 initial conditions (the inner curves). It is clear that for the 2D billiard in (a) the agreement
is almost perfect, in the sense that the fluctuations are within the predicted range, whilst for the
3D billiard in (b) we see systematic deviations, obviously caused by some, perhaps unexpected,
long time correlations. Such correlations are even stronger in the case of the hydrogen atom in
a strong magnetic field, shown in (c). In all cases the deviations are predominantly negative:
the orbit tries to stick to some of the already occupied cells.

(big ρ2(j = ∞) ≈ 1), or strongly chaotic (big Lyapunov exponent but not necessarily very
largeρ2(j = ∞)).

We have investigated the plotsρ(j) versusj/N for the following systems:(a) the
2D billiard (Robnik 1983) atλ = 0.375, (b) the 3D billiard (Prosen 1997a,b, def. geom.:
a = − 1

5, b = − 12
5 ), (c) the hydrogen atom in strong magnetic field diamagnetic Kepler

problem (DKP) with thescaled energyε = −0.05 (see e.g. Hasegawaet al 1989), (d)
the H́enon-Heiles system at the escape (dissociation) energyE = 1

6 (see H́enon and Heiles
1964), (e) the standard map on a torus (Chirikov 1979) withk = 3, (f) the standard map
on a torus (Chirikov 1979) withk = 400, and(g) for the logistic map atλ = 4 (the ergodic
tent map).

In the case of smooth systems(c) and (d) we have used special symplectic integration
routines, devised by Yoshida (1990). This enabled a fast and extremely accurate calculations,
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Figure 1. (Continued)

allowing us to compute to an order of magnitude of about 105 iterations on the SOS.
The agreement for all systems was perfect (deviations much smaller than 1%), except

in (d) and (e), where the deviations fluctuated about up to 1%. Therefore we do not show
these plots, since all curves practically overlap with the theoretical curve (8) and (9) within
the graphical resolution. (In fact the agreement was better still than in the case of the
ergodic-only system (the irrational triangle) whose results we show in figure 3, which is
another reason for not showing the plots for(d)–(g).)

The small deviations stem from the fact that the Lyapunov coefficients are still not
big enough, and also that there might be significant episodes of transient behaviour in the
relationship ofρ(j) with respect to the discrete timej/N . Such transient episodes are
typically caused by the sticky objects in the phase space, e.g. by cantori, where the classical
orbit spends a long time before resuming the chaotic random filling of the remaining empty
cells. They are very well manifested in systems with more pronounced KAM structure,
such as the 2D billiard (λ = 0.15) or 3D billiard (for sufficiently smalla and b, e.g.
a = −0.1, b = 0). In order to describe such systematic effects in a statistical way we have
developed amulticomponent random model, where orbital transitions inside each component
are random as in ourrandom model, however, they may jump (rarely) from one into another
component. Some of the dynamical features are well described by such a model, whose
detailed description will be published in a separate paper (Robniket al 1997).

In cases(a)–(c) the agreement is so good, surprisingly, that it is necessary to magnify the
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Figure 1. (Continued)

scale so that the details of deviations become clearly visible. This is done in figures 1(a)–(c)
for the systems, respectively. We plot the fluctuation (difference)ρnumerical(j) − ρtheory(j)

(the noisy curves) to be compared with the theoretically expected standard deviation
σ(j) = ±

√
S(j)− ρ2(j) (smooth curves), again as a function of the scaled discrete time

j/N . We do this in each of the plots for one initial condition (the pair of outer smooth
curves) and for the average over 50 randomly (uniformly over the chaotic component)
chosen initial conditions (the pair of inner smooth curves) which suppress the dispersion by
a factor of 50 and the standard deviation by

√
50. In each of these plots, figures 1(a)–(c),

the more noisy curve corresponds to one initial condition, and the less noisy one to the
average over 50 initial conditions.

Our conclusion on inspection of these plots is that the 2D billiard perfectly obeys the
law of our random model, whilst for the hydrogen atom in a strong magnetic field and the
3D billiard we uncover systematic deviations from the theory for sufficiently large scaled
discrete timesj/N : the deviations are orders of magnitude bigger than the prediction of our
random modelfor the DKP, but somewhat smaller in the 3D billiard. It should be noted
that the deviations are almost strictlynegative, reflecting the fact that the physical orbits like
to stick to already occupied cells (in the vicinity of the sticky objects in the phase space,
such as cantori, whose structure could be identified and uncovered). The same behaviour
was observed in the systems(d), (e) and (f) defined above. We could see the plateaux in
the curvesρ(j) versusj/N , and then identify the relevant objects in the SOS.
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Figure 2. We show the resultsρnumerical(j) − ρtheory(j) versusj/N for the random number
generators, compared with the theoretical±σ(j) curves according to equation (13) (Presset al
1986): for ran0 and ran3 the agreement is excellent, while for ran1 and ran2 the deviations
are so big and mainly positive, that they are actually not random: they seem to repel from the
occupied cells.

It is interesting to look at the results for random number generators. Cells are ‘randomly’
chosen, using different random-number-generator algorithms. One such algorithm was
devised by Finocchiaroet al (1993) in the context of nuclear physics. The agreement
was perfect, so we do not show the fluctuations plots.

Also, we have checked and tested some well known algorithms for random-number
generators, such as ran0, ran1, ran2 and ran3 devised and described in Presset al (1986
ch 7, and the references therein). The results are shown in figure 2. As we see ran0 and
ran3 are in excellent agreement with ourrandom model, whilst for ran1 and ran2 random
generators the deviations clearly become very large. Thus, for example, our dynamical
deterministic 2D billiard systems, the logistic map or the standard map atk = 400, are
in fact better random-number generators than some of the most familiar random-number
generators used in computers.

Finally, we have looked at the irrational triangle (the angles areα = (
√

5− 1)π/4,
β = (

√
2− 1)π/2) as one ergodic system with strictly zero Lyapunov exponents (Sinai

1976, Artusoet al 1997). Even there, agreement with ourrandom modelis surpringly good
on the largest scale (figure 3), while the fluctuation diagram exhibits large deviations, again
negative, showing that the real billiard orbits like to stay in the already occupied regions
(sticky objects in phase space).

In conclusion, we have developedthe random modelof stochastic diffusion of dynamical
systems with invariant measure on their SOS, which is supposed and confirmed to apply
very well in strongly chaotic systems (for which the Lyapunov coefficients on the chaotic
component are sufficiently large). We have discovered and explained the universal scaling
behaviour of the normalized chaotic measureρ as a function of the scaled discrete time
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Figure 3. We show the global plot,ρnumerical(j) (full curve) andρtheory(j) (broken curve), for
the irrational triangle, where the agreement is surprinsingly good, in spite of strictly vanishing
Lyapunov exponents. In the fluctuations diagram we plotρnumerical(j)− ρtheory(j) versusj/N ,
together with the±σ , where we see the same trend to negative deviations due to the sticky
objects in the phase space. Only one initial condition was used in this calculation.

j/N , whereN is the number of cells: namely, in the limit of sufficiently largeN , for j/N
fixed, we have a simple exponential lawρ(j) = 1−exp(−j/N). We also predict the higher
moments, especially the dispersion given in equation (13). The model is solved completely
in the sense that we have calculated the probabilitiesPj (k) of having exactlyk nonempty
cells at timej . Therefore, all the moments can be calculated. The deviations from the
predictions of the random model are qualitatively understood, but will be treated in detail
together with a new, more general theory (the multicomponent model) in a separate work
(Robnik et al 1997). The work is in a sense an extension of the theory of transport in
Hamiltonian systems by MacKayet al (1984).

Financial support by the Ministry of Science and Technology of the Republic of Slovenia
is acknowledged with thanks. AR thanks INFN for financial support. This work was also
supported by the Rector’s Fund of the University of Maribor.
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Bäcker A, Steiner F and Stifter P 1995Phys. Rev.E 52 2463
Benettin G C, Galgani L, Giorgilli A and Strelcyn J-M 1984Nuovo CimentoB 79 201
Berry M V 1983 Eur. J. Phys.2 91
Berry M V and Robnik M 1984J. Phys. A: Math. Gen.17 2413
Bruus H and Stone A D 1994Phys. Rev.B 50 18 275



Letter to the Editor L813

Chirikov B V 1979 Phys. Rep.52 263
Dobnikar J 1996Diploma ThesisDepartment of Physics, University of Ljubljana and CAMTP University of

Maribor (October 1996) (in Slovenian) unpublished
Finocchiaro P, Agodi C, Alba R, Bellia G, Coniglione R, Del Zoppo A, Maiolino C, Migneco E, Piattelli P and

Sapienza P 1993Nucl. Instrum. Methods334 504
Graham R L, Knuth D E and Patashnik O 1994Concrete Mathematics(Reading, MA: Addison-Wesley) p 257
Gutzwiller M C 1990Chaos in Classical and Quantum Mechanics(New York: Springer) p 132
Hasegawa H, Robnik M and Wunner G 1989Prog. Theor. Phys. Suppl. (Kyoto)98 198
Hayli A, Dumont T, Moulin-Ollagier J and Strelcyn J-M 1987J. Phys. A: Math. Gen.20 3237
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